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OPERATING CHARACTERISTICS FOR WEIGHTED

ENERGY DETECTOR WITH GAUSSIAN SIGNALS
INTRCDUCTION

The operating characteristics of an equi-weighted energy
detector for Gaussian signals in noise, in terms of false alarm
and detection probabilities, can be characterized mathematically
by a partial exponential expansion, and have previously been
numerically evaluated for arbitrary numbers of samples and
signal~-to-noise ratios [i; (7) - (8) and figures 2 -~ 6}.
However, when the weights employed in the energy detector are
unegual, or if the signal and noise powers on each sample are
unequal, these results do not apply and can be misleading,
especially when the number of samples summed is not large. What
is needed, in this case of arbitrary numbers of samples and
unequal weights or powers, is an exact approach in terms of the
characteristic function of the decision variable; this latter
function is frequently available in closed form and can be
employed in the fast efficient procedure presented in {2) and
utilized in {3,4,5] for direct accurcte evaluation of the
exceedance discribution function,

At the same time, it would be very useful to have accurate
approximations for the receiver operating characteristics, which
apply over the full range of app:icable false alarm and detection
probabilities, yet are easily computed in terms of readily

available functions, or circumvent some of the more difficult
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numerical procedures required in the exact approach. Here, we
will consider four such approximations, namely Gaussian, chi-
square, constant plus chi-square, and generalized noncentral
chi-square, and demonstrate the range of applicability of each.

Thus, ocur goals here are two-fold

{l1) determination of exact operating characteristics of i
arbitrary weighted energy detectors along with working programs,
thereby allowing for investigation of other sgimilar cases of
interest to the user; and

(2) construction of accurate simple approximations to the
operafing characteristics, which can be extended to related
difficult problems and/or circumvent complicated numerical
procedures.

As a by-product, fhe inadequacy of some extant approximations
will be delineated qﬁantitatively; in pérticular, the generally
optimistic results predicted by the Gaussian approximation will
be shown to prevail even when the number of independent samples

involved in the energy detector is very large.
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CHARACTERISTIC FUNCTION

We presume that we have M channels (or samples) containing
either noise-alone or signal-plus-noise, and that the random
variables in each channel are statistically independent of each
other. Specifically, for our interest, the output envelopes,
{em} for 1 {m ¢ M, of M disjoint narrowband filters are
subjeéted to weighted square-law summation for purposes of
threshold comparison and a statement about signal presence or
absence on that particular observation of M outputs. The

decision variable in this case is

= w Z I} (1)

where weights {wm} are all positive but otherwise arbitrary, and
the M squared-envelope outputs (zm} are statistically independent
and identically distributed. An example is afforded by a finite-
time exponential summer where Wo = A rm'l €1, 1 <m &N,

Without loss of generality, the sum of the weights is set

egual to unity,

M
w_ = 1 ; that is, A = e . (2)
m M
l-r
mml

Then, the mean of random variable x in (1) is equal to the mean

of each random variable z because all the {zm] are identically

m'
distributed. (If there are scaling differences in the variables

{zm}, these factors can be akscrbed in modified scalings {wm),
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without loss of generality.) Under these assumptions, it should
be observed that the performance of the weighted energy detector
in (1) is independent of the ordering of the weights; thus, the
weights can be arranged in any order without affecting the
detection capability. Also, the absolute level of the {wm}

cannot affect the operating characteristics of detector (1).

STATISTICS OF L

For Gaussian signals and noises present at the inputs to the
M narrowband filters in (1), the probability density function of

each filter output envelope-squared random variable z_ is

n
p,lu) = % exp{zg] for u > 0 , (3)
where parameter
1 for noise-alone
as= . (4)
l + R for signal-plus-noise

Here, we have normalized according to the noise power; that is,
the mean of random variable z, is set equal to 1 for noise-alone.
This presumption is equivalent to having knowledge of the average
noise lavel in the absence of signal and can be accomplished in
practice by monitoring the filter outputs over a sufficiently
long past interval of time. Also, R is the sigﬁal-to-ﬁbise power
ratio per sample at the output of each filter.

The characteristic function of each random variable z_ in (1)

m
is given by expectation (ensemble average)
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1

£ (&) = E(exp(ifz)} = f du exp(ifu) p,(v) = T—tres (5)

where we used (3). The cumulants {xz(k)} of z_ are immediately

m
available from (5) as

TEZ%TT X (k) = a¥ for k 21 . (6)

Actually, these are scaled cumulants, by the factor 1/(k-1)1!;

they are more convenient and will b2 employed henceforth.

CHARACTERISTIC FUNCTION OF OUTPUT x
The characteristic function of summation random variable x in

(1) is given by expactation

-1

M M
fx(E) = E{exp(iix)]} = T_T fz(wmi) = T—T(l - iEwma) ' (7)
m=1 ma}

where we used the ‘-deperdence of the {zm} and relation (5). The

(scaled) c¢umula .s . % are available from (7) according to

1 k

=17 Xx(k) = a W for k > 1 . (8)

r\/]z
L
a3 =
"
)
x
b

8
X
o

In particular, the mean and variance of x are, upon use of (2),

2 . al
by = xx(l) = 2 w1 = a, o xx(?) a wz .. (9)

The desired closed form for the characteristic function of x is
given by {7}, where the signal-to-noise ratio parameter a is
given by (4). Result (7) applies for arbitrary M, weights {wm},

and per-sample signal-to-n2ise¢ ratie R.
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SOME RELATED RESULTS

Characteristic functions of the form of (7) occur in numerous
problems. For example, the stability of a spectral estimation
technique employing overlapped FFT processing of windowed data
encountered this form [{6; (35) and (15)], where weights {wy} were
proportional to the eigenvalues {Am} of 2 normalized covariance
function. Another example is furnished by diversity combination
in a channel subject to partially-correlated signal fading; see
{7; (p-14)], [8; (24)), and {9]. In particular, the exact

characteristic function in [7] and {8] took the form

{1 - i{[oz . zxm]} , (10)

m=]

where {Am} are the eigenvalues of a covariance matrix. Parameter

D was the order of diversity in [7], but was equal to 1 in (8].

GAUSSIAN APPROXIMATION TO EXCEEDANCE DISTRIBUTION

For the general characteristic function given by (7) and (4),
a Gaussian approximation to the probability density and
exceedance distribution functions is given in appendix A. It is
derived for arbitrary M, weights {wm}, and signal-to-noise ratio
R. However, its applicability to numerical evaluation of
receiver operating characteristics, in the form of detection
versus false alaim probabilities, will be shown to be rather

limited in the next section.
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EXCEEDANCE DISTRIBUTION FOR ALL WEIGHTS EQUAL
In this section, the weights {wm} in (1) and (2) are e.,ual:

1
LA for 1 {<m < M. (11)

The characteristic function in (7) then becomes
£08) = (1 - iga/my™ | . (12)

This corresponds to a multiple of 2 chi-squazred random variate
with 2M degrees of freedom. The corresponding probability

density function is

w1 exp{-uM/a)

(n-1)1 (a/mM

px(u} - for u » C , “(13)

while the exceedance distributicon function is, for u > 0,

Q (u) = J dt p,(t) = exp(-uM/a) e, ,(uM/a) = Eu_l(un/a) . (14)
u

Here, en(x) is the partial exponential function (10; (6.5.11)],

D,k
X
en(x) - TR (15)
k=0

and we have defined auxiliary function
En(x) = exp(-x) en(x) for x 2 0 . (16)

I1f threchold value T is used for comparison with output x of

the energy detector (1), then the false alarm probability P, is
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PF - Qx(T; awl) = EM—I(TM) . (17)

Similarly, the detection probability Py is, from (14) and (4),

’ ™
PD - Qx(T; a=l+R) = EM—l[T:ﬁ] . (18)

When T is eliminated between .(17) and (18), the operating
characteristics (P, versus P.) can be plotted, with signal-to-
noise ratio R as a parameter. Separate plots are required for

different values of M, the number of envelope-squared samples.

GRAPHICAL RESULTS
The receiver operating characteristics (ROC) for
M=-1, 2,-4, 8, 16, 32, 64, 128, 256, 512, 1024 (19)

are plotted in figures 1 through 11, on normal probability paper,
for false alarm probabilities ranging from 1E-10 to .1 and for
detection probabilities ranging from .01 to .999. Signal-to-
noise ratios (in decibels) have been chosen, typically, to cover
Po/Pp possibilities from low-quality pair .01,.5 to high-quality
pairs in the neighborhood of 1E-10,.99.

Superposed in figure 3 (in dashed lines) is the Gaussian
approximation, for M = 4, to the exact exceedance distribution
function Q. in (14); see appendix A. Three selected values of
signal-to-noise ratio R are indicated, namely R = 4, 8, and 12
dB. They are identified by a black dot where they cross the

exact operating characteristic for the same signal-to-noise
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ratio. It is seen that the Gaussian approximation is virtually
useless at this low valué of M, the number of samples.

This superposition, of three representative curves afforded
by the Gaussian approximation, is continued up through M = 1024
in fiqure 11, Again, agreement with the exact results is
generaliy quite poor. Even at M = 1024, the required signal-to-

noise ratio from the Gaussian approximation for P_ = 1lE-10,

F
P. = .3, for example, is in error by .3 dB.

D

Furthermore, it should be observed that the Gaussian
approximation is always optimistic in the useful range of the
operating characteristics; ihis bias is misleading in
quantitative performance predictions applied to practical
detection systems. Additionally, the case in this section,
namely egqual weights, is the most favorable situation for the
Gaussian approximation to apply in; any other distribution of
weight values makes the effective number of weights (M, in (A-98)
and sequel) less than M, thereby deviating even further from an
accurate application of the central limit theorem. The message
to be conveyed here is that the performance capability of energy

detectors for Gaussian signals and noises should be based on

something other than the Gaussian approximation.
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EXCEEDANCE DISTRIBUTION FOR ALL WEIGHTS DIFFERENT

In this section, we confine attention to the case where all

the weights {wm} are different from each other; that is,

Y # Wy if m¢# k ; L > 0 . {20)

Then, we expand the characteristic function of x in (7) in a

partial fraction expansion according to

-1

M M
. Bm
£.(8) = ! ‘(1 - 1£wma) - j{: T_:mTE;;; ' (21)
m=1 m=]
where coefficients
wghl
Bm - - for 1 < m < M, (22)
l |(wm - wk)
k=1
k#m

depend only on weights {wm} and not on signal-to-noise ratio R.
The probability density function of x is then immediately

available from (21) as

M _
px(u) - zz:Am Bm exp(—Amu) for u > 0 , (23)
me]l
where A, = 1/(wma). The corresponding exceedanée distribution is
® M
) - 34 ) = {- 3 ru . 24}
Qx(u) j dt px(ty }::Bm expl Amu. fo ¢ (
u mel
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1€ threshold T is used as the basis of comparison for output
x of the weighted energy detector in (1), the false alarm and

detection probabilities follow from (24), respectively, as

Pp = Q. (T; & = 1) , Py = Qx(T; as=14+R). (25)
As an example, if M = 1, then v, = 1, Al = l/a, Bl = 1, and
(24) vields Qx(u) = exp({~usa) for u > 0. Then, (25) gives

in PF

1
P 1+R exp(—rzﬁ-] . (26)

PF = exp(-T) , PD - exp(fzi) = Pp
For this special case of M « 1, threshold T can be eliminated and

PD expressed explicitly in terms of P_ and R.

F

GRAPHICAL RESULTS

The particular case of unequal weights that we shall

concentrate on here is a set of exponential weights
w_ = AT for 1 < m < M, r <1, (27)

where scale factor A is selected for normalization of the
weights, according to (2). Of course, the ahsolute level of the
weights does not affect the operating characteristics.

In figqure 12, the ROC for M = 4 and r =« .99 is plotted, as
determined from (25) and (24). Since r is close to 1 for this
example, the weights (27) are all nearly equal, causing some of
the coefficients {Bm} in (22) to be rather large, in the range of

+.5E6. This leads to round-off error in sum (24; for the

22
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exceedance distribution function and the possibility of useless
numerjical results; however, because M = 4 is a small number, the
round-off error does not yet show up in figure 12.

When M is increased to 3 in figqure 13 and r is kept at .99,
coefficients {Bm} in (22) reach values in the range of +.7E12,
and round-off error begins to show up as wiggly lines in the
higher detecticn probability values Aeat .999. We are using a
computer with 64 bits per word, which yields approximately 15
decirals of accuracy for the mantissa. Although coefficients
(Bm} can be calculated very accurately from (22), they alternate
in sign and can be very large. Then Q, in (24) requires
differencing of large numbers, with an attendant possibly
damaging loss of accuracy, especially for small Pg.

When M is increased by one, to 9 in figure 14, and r is

- maintained at .99, round-off error is now significant at the

upper edge of the ROC, although useful characteristics are still

available for lower values of P.. The reason for this problem is

D
that all the weights are close to each other; in fact, the M-th

M-1

weight i3 r = ,922 times as large as the first weight. The

largest coefficient values for {Bm} are in the range of +.16E1l4.
When the weights are spread out over a wider range, larger
values of M can be tolerated in sum (24), without encountering
signiticant round-off error. For example, a set of M = 16
uniformlv distributed random weights, over the (9,1) interval,

were utilized in figure 15 without any problems. But when M was

increased to 20 in figure 16, again for uniformly distributed

23
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weights, the upper edge of the ROC, for L .99, was useless,.
Nevertheless, a significant portion of the ROC for lower Py
values is still acceptable.

The lesson to be drawn from these results is that the partial
fraction expansion, leading to the exceedance distribution
function in (24}, has uvtility for spread out weights {ﬁm} and
moderately low values of M, the number of envelope-squared
samples. However, it will not be a viable tool for large values‘
of M, nor for general weight structures which may have some close
or equal values. The more general approach presented in [2], in
tatms of an arbitrary characteristic function, has no such

limitations, on the other hand, although the numerical

calculations required are more extensive.

24
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"CHI-SQUARED APPROXIMATION FCR ARBITRARY WEIGHTS

The difficulty of evaluating the ROC from exact character-
istic functions of the form of (7) and (10) has prompted the use
of approximations that attempt to extract an effective number of
independent samples from a general weight structure, and use this
parameter in a simpler chi-squared f£it. For example, in
[6; (38) and sequel], such an approximation was fruitfully
employed to study the stability of a spectral analysis technique
employing egqui-weighted overlapped segments. Alsc, in
{9; (A-24) ~ (A-28)), a chi-squared approximation was adopted for
the analysis of a diversity combiner in a partially-correlated
fading channel, However, in this latter case, no quantitative

measure of the error in the approximation was given.

" PARAMETERS OF APPROXIMATION

Here, we will address the adequacy of the chi-squared
approximation for a general exponential weight structure of the
form of (27). We begin by generalizing the chi-squared
characteristic function in (12) to the candidate form

-M
£,(8) = (1 - ikw a) e, (28)

where Ve is an effective weight and M, is an effective number of
envelope-squared samples, which may be noninteger. ({(The number
of degrees of freedom in (28) is 2M_,.) The corresponding

probability density and exceedance distribution functions are
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He—l ~u
u expiw_ a

p.{u}) = . ; for uw > 0 ,
e e
r(m,) (w,a)
Q fu) = r[ne, ;3;)//r(me) for u > 0 , (29)
e

respectively, where I'(+,+) is the incomplete gamma function
f{10; 6.5.3]. These results generalize (13) and (14). The .

{scaled) cumulants of this gamma distribution follow from (28) as

Tt X = my (wa® for k21 . (30)
The mean and variance of this approximation are therefore

2 .2 .
"e W, @ and My, wg 37, respectively.

When we equate these first two moments of the generalized

chi-squared approximation {28) to the first two moments of

decision variable x in (9) and (8), we find

M 2
W we &::wm]
W = _2 M = 1 - Am=l (31)
e Wl ’ e W2 M 2 :
v
M=l

For example, if all the weig..ts are egual, then M, = M. On the
other hand, if all the weights are zero except for one, then

M, = 1. Both of these limiting cases obviously agree with
physical intuition. Observe ?hat Vo and Mo are.independent of
parameter a or R, the signal-to-noise ratio.

For the exponential weight structure in (27), the effective

number of weights and the effective weight are
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M
1 + 1

- = 5 W m - for w, = 1 . {32)
1 1 + L’h e Me

Me-

r
r
it should be noted that as M » =, effective number M, saturates
at value (1 + r¢)/(1 - r), which is not infinite.

Since the incomplete gamma function in (29) is tedinsus to
compute for My noninteger, performance could be bracketed by the
two cases M,, Mi+1, where M, is the integer part of Mg- Or
interpolation could be used between these two cases. 1Instead, we
shall choose examples for which M, is an integer; this allows us
to use a form like (14), which is easily computed upon

replacement of M by M.

GRAPHICAL RESULTS

The first example of the use of a chi-squared approximation,
for the exponential weight structure in (27), is furnished by
figure 17 for M = 5, r =~ .69388907; this particular r value is
chosen to vyield M, = 4, as-may be verified from (32). The exact
results (solid lines) in this fiqure were obtained by the method
of the previous section, namely, all weights ditferent. The
three dashed curves ate yielded by the chi-squared approximation
of this section, with Mg = 4; the latter are seen to be
optimistic by almost I dB along the left edge of the figure.

When M is increased to 25 and r decreased to .60000182, again
resulting in M, = 4, figure 18 shows that ;he chi-squared

approximation is far worse. The reason for this behavior is .nat
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25 significantly different weights cannot be well represented by
4 equal weights in terms of evaluating the detection capability
of the energy detector (1).

The series of plots in fiqures 19, 20, 21, 22, 23 correspond,
respectively, to M, = 8, 16, 32, 64, 128, for various
combinations of M and r, as indicated on the figures. Again, the
chi-squared approximation is generallf optimistic in the useful
range c¢f performance. For M = 64 in figure 20, the discrepancy
is almost 1 dB along the left edge. However, for large M, like
200 in figure 23, the difference is only about .25 dB along the
left edge.

The results in figures 21, 22, 23 for M, = 32, 64, 128,
respectively, were not cbtainable from the all-weights-different
method of the previcps section, due to excessively lirge
coefficients {Bm} in (22). 1Instead, it was necessary to resort
to the numerical integration procedr:re given in {2]; the values
of increment AE and length LE appropriate to each case are
indicated on each figure.

A conclusion to be drawn from the results in this section is
that, although the chi-squared approximation is much better than
the Gaussian approximation, it is still not adequate for accurate
performance predictions within a few tenths of a decibel. The
chi-squared approximation is generally unacceptable for small M,
unless t is very close tn 1. And for large Mg it is'acceptable
in some regions of the ROC, but not in others, especially if the

extreme weight ratio, ' 1, is very small,
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THIRD-ORDER APPROXIMATION FOR ARBITRARY WEIGHTS

When a constant ¢ is added to a random variable, ﬁhe
characteristic function is modified by multiplication by the
factor exp(icf). Accordingly, a further géneralization of the
chi-squared characteristic function in (28) is afforded by

exp(i&bca)
£(2) = - = exp(ifb_a - M_ In(1 - ikw a)] . (33)

c
(1 - i&w a)

This form now has three parameters to choose, namely Wee b_, and

c
effective number of samples M,. This is in distinction to the
chi-squared approximation (28) and the Gaussian approximation
(A-2), both of which had only two free parameters to adjust.
Thus, whereas we only matched the first two moments in (30) and
(A~-3), respectively, to those of decision variable x, we can now
match the first three moments of x if we use characteristic

function model (33).

The cumulants of characteristic function (33) are

Xc(l) = Mc w_a+ bc a ,

c
1 k )
®k=1)71 X (k) = M. (w, a) for k 2 2 . (34)

When the first three cumulants (or moments) of (34) are equated
with the corresponding quantities of decision variable x, as

given by (8), the unique solutions for the parameters of (33) are

wg w3 w%
H W emeaw ¢ w o  —emae ’ b - w - c-n-—‘ ’ (35)
c W§ c W2 c 1 w3
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where

wk = }E:w . {36}

1t should be noted that the parameters in (35) are independent of
parameter a or R, the signal-to-noise ratio.
The probability density function corresponding to

characteristic function (33) is

M -1 - u+ b a
{u - bca) ¢ exp[ < }
f

w_a

or u > bca ' (37)

and zero otherwise. The exceedance (gamma) distribution function
is an obvious generalization of (29), or (14) if Mc is integer;

see [10; 6.5.3, 6.5.2, 6.5.13].

u - bca u - bca
Qc(u) - I'[Mc, -—;’F—-—]/T(MC) = EMC—I[_-;':T] for u > bca . {38)

For threshold value T, the false alarm and detection

probabilities follow immediately as

[T - bc] [T - bca]
P. = E —— P. = E s, | (39)
Mc-l wc D Mc-l wcg

"

provided that T > bca.
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EXPONENTIAL WEIGHTS
We now restrict attention to the exponential weight structure

for 1 {m < M, with t = ¢ ,. {40) .

where we have normalized at Wl = 1, Then, from (36),

kg Lk . k-l
() o EEL )

1+t + t2 4 oo 4 gkt
= =T - (41)
1 + 0+ ¢% 4+ v0o¢ &1

In particular,

2

[
i

2
1l - 1 t r 1 + ¢t + t
T tisc’ W™ (1 = t) 5 - (42)

'I'W-
1 2 l+r + rz

E +
t +

The parameters in (35) then follow by substitution as

2 3 2
M = - r3) (- tzl_ R . (1 + t]3 1+ r 4 r? (43)
c 3 2 1 - ¢ 1 + ¢ 21!
(1 -2 (G -+¢3) L+ttt
2 2
v, = 1 - r2 1l +t + tz ; bc - {1l - ¢r t} (£ -~ t) . (44)

1 -t“1 +r 4+ 1 (1 + r)2 (1 + bt + tz)

For equal weiqghts, Yo " 1/M, we get the usual reduction to

Wy =1, Wy = 1/M, Wy = 1/m%, giving M_ = M, w_ = 1/M, b_ = 0.

c
Furthermore, it is shown in appendix B that additive constant b,
in (33) and (37), as determined from (35) and (36), is never

negative, for any nonnegative weight structure {wm}.

45



TR 8753
GRAPHICAL RESULTS

The first example we consider here is M = 25, r = ,75049209,
for which (43) gives M, = 4; again, the reason for the particular
choice of r is made so that M, is integer and (39) can be used.
The approximation afforded by (39) is superposed (dashed lines)
in figure 24 on the exact results (solid lines) obtained from
(25). 1Increasing M to 64 and changing r to .75049170, so that M,
is maintained at 4, generates virtually the same approximation.
The fit is pocor and rather optimistic at the left edge of the
figure, due to the small value of M., namely 4.

For M = 50 and r = .96915298, M, is incregsed to 32 and the
results are compared in figure 25. Now, the fit afforded by the
constant plus chi-~-squared approximation is rather good over the
entire range of false alarm and detection probabilities shown; in
fact, the approximation is optimistic by about .1 dB on the left
edge of the figure. The reason for this development is the
larger value of the effective number of samples, M., namely 32.

Two more results, for M. eéual to 64 and 128, yield similar
conclusicns in figures 26 and 27, respectively. Again, the
exponential weight structure was employed. However, the gnodness
of fit of the constant plus chi-squared approximation is not
limited to this type of weights, but in fact applies to arbitrary
structures. To back up this statement, an example of uniformly
distributed random weights for M = 133 and M. = 77.971 is
displayed in figure 28; the overlay, which used M, = 78 in

approximation (39), is seen to be very good for this value of M..

46

-



TR 8753

OO OIS O RN ....m
RN "
AN R R NS IO RO RN 2
e TSSO RS RS RSN .
AORON L2 NN DRONIROUONDNORY
}/ ,V/N /ﬂ////ﬂ w7/r/zf <% 5
ﬁ///% N/J///ﬂr/ﬂ N

N
ORI N

PN

/ /|

li/
)14
 /
%
. 7B / 7
| ////,///A/ %%
/// 4
7/
4
/ /!

L
s
Y
VK
N497
9
AN

02
01

40}130913(] 30 A3l1|iqegouy

Probability of False Alarm
Figure 24. ROC fer M=25, r=,75043203 (M =4)

47




Probability of Detection

A B VAV VAT
‘%5‘ A/ //////////’

TR 8753

-~

RN NN
AN
NN

\ N
AN
N \\i\

.88

A/

/ ’//

.98 }—

/
/s
b s
/
.

N
. N

\ .
LN NN N N

NS
SN
NN
NN
\\\.\&\
N

\\Q
NNAR AN
\ \\\\‘_\\\
NSNS

\\
S‘\

X
N
S
N
NN
NN

>
|

' Va4 ’ = -4 48 % |
WAL A i

w77 amiii
.02 LAl |
o j/g/c/;/fj/;/r e ]

E-10E-3 €-8 £-7 E-6 E-5 £-4 £-3 .01.02 .05 .1

Probsbility of False RAlarm

Figure 25, ROC for M=50, r=.,96915238 (}N,.=32)
48




ELE ,
.998 d / / /£

995 |—1,

Probability of Detection

N
WAN
™
N

93/

9917 /'f A
) ////////

. /,é /;/

. . - - - - .
~n [ =S wn (-2} ~3 [+ =]

N
A
4o

i

!

:01 //;VJ// //ik/

€-i0€-9 €-8 £-7 £-6 E-5 €4 £-3

.01.02 .05 .1

Probability of False Alarm
Figure 26. ROC for M=100, r=,98445939 (M.=64)

49



.998
@ XA A A L1V

.995 }—A—

Probakility of Detection

.33

.98‘ /

.95

\\\\*k

N,

N
"

N
N

N

AN
N

™~

TN
N

N
N

N
N
N ™~

\\\‘\\\ N

N

N

Y
N

7
AN/ /
' ATV LIT
AN
. //f / [ / /Z////// /t\/.—.-'t.: JB.
N 4mi
VAL

01 W 4L L
£-10€-9 €-8 E-7 €-6 E-5 €-¢4 E-3 .01,02 .05 .1

Probability of False Rlarm

Figure 27. ROC for M=200, r=,38220012 (M.=128)
50




TR 8753

VBV AWA DAV VAV
885 // /| / // / / L// / f//
AV AV //f/
AL [o/ // // Va4V ! ;, /;////
. ,/, ////// /:/ //;////
c .s/// /f/////////////// //// /// / //<;/
s | VA
: .3/ ViViva ""////// 7
S AN TV 00
S NAN VXN AN
SN AVAVAVAYS VA G844
3 JAAAN X LA LN
S AL AAS NSV SN

N

=

N

"N

\\\\
U

\ \s

B
0

' //7
.01/—////——-4/
E~10E-9 £-8 E-?7 E-6 €E-5 E-4 -3 .01.02 .05 .1
Probability of False Rlarm
Figure 28. ROC for M=133, Random Weights (M. =78)

51/52
Reverse Blank




TR 8753
APPLICATION TO EIGENVALUE PROBLEM

Earlier, in (10) and [8; (24)]), a particular characteristic
" function was given which has occurred in a number of statistical

analyses. That characteristic function, in normalized form, is

M -1

£(E) = T—T{l - ia(l + R xm]} , (45)

m=]

where R is the per-sample signal-to-noise ratio and (Am} are the

eigenva;ues of the normalized covariance matrix P of the fading

signal components. By expanding the ln of (45) in a powef

series in i§, the cumulants of random variable x are found to be

M Mook
T Xk = E::(l + r )k - }E: EZ:[&] R AR -
m=] n=1 nw=d
k. :
- M+ }Z;(:] RP tr[p“) for k > 1 , (46)
n=l

where we have used the simplifying result in appendix C regarding
. sums of powers of eigenvalues. In particular, there follows

from (46), the first three cumulants of x in terms of tr(?n):

xx(l) = M4+ R tr(pP) ,

2

X, (2) = M + 2R tr(P) + R tr(p?) ,

2 3

%xx(B) = M + 3R tr(P) + 3R% tr(P%) + R3 tr(pd) . (47)
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PARAMETERS FOR CANDIDATE APPROXIMATION

In this section, we will approximate exact characteristic
function (45) by the form employing the constant plus chi-squared
idea again, namely '

exp(i&bd) : ) .
£408) = ol exp(itby - My Inil - itwy)] . (48)
(1 - iiwd)

The cumulants are given by a form very similar to (34), and in
particular, the first three (scaled) cumulants of characteristic

function (48) are

2 1 3

If the first three cumulants, X (k) for k=1,2,3, were specified,

we could then solve'(49) for the required parameters according to
3 Y3

Xd(Z) Xd(3)/2 (2)

M ¢ Wy m meemmee— . B, o= X (1) - s . (50)

Now, we set the cumulants of approximation (48) equal to the
exact cumulants given by (47), and then solve (50) for the
required parameter values. Then, approximation (48) to exact
chatacteristic function (4S) is available for qumerical
evaluation. If cumulants {xx(k)} for k=1,2,3 can be evaluated
either analytically (via eigenvalues {xm} in (46) or by the trace
relations in 147)) or numerically (estimated via finite time

averages), then the parameters in (50) can be determined and the

corresponding ROC found.
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EXACT PERFORMANCE OF (45)

I1f signal-to-noise ratio R = 0 in (45), then
fx(l) = (1 ~ :h',)"M and there follows, in a manner similar to
(14), Q,(u) = E, ,(u) and Pp =~ E, ,(T) for threshold T.
- If R > 0 and all the eigenvalues {);} in (45) are distinct,

then, in a manner similar to (21), we can express

M

B, (R)
fx(f.) - Z - ' {51)
1 - ig1 + R

where coefficients

[1 + R Am)““l

M

gM-1 T_T(xm - )
k=l
kz2m

'Bm(R) - for 1 { m { M. : (52)

The exceedance distribution function is then

M
- u
Q,(u) = zz:am(a) exp(f—:—ﬁ—i;) foru> 0, R>0, (53)
mm]l
. and the detection probability is
M
- - T
PD = Zam(a) exp(r-—;—m) for T > 0 , R >» 0 . (54) -
mwl i

The eigenvalues {xm} of normalized covariance matrix P are
independent of signal-to-noise ratio R; however, ccefficients

(B,(R)} are dependent on R and explicitly indicated so.

RS coral SR S S co= = = e

e e R T A e S T e o SR T
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GRAPHICAL RESULTS

The only example that we consider here is a covariance matrix

n-n
,lm-n|

P = [pmn], where Pun * In particular, for M = 10 and

p» = .5, the M eigenvalues {Am} of P were evaluated and the

results on page 55 were used for an exact evaluation of the
detection and false alarm probabilities; these are disblayed as
solid lines in fiqure 29. _

Then, we returned to matrix P, ignored.the knowledge of the
eigenvalues, and instead employed the trace relations in (47) and
appendix C to evaluate the cumulants of random variable x. These
were substituted in (50) to determine the parameters of
characteristic function (48), as explained in the sequel to (50).
Then, the method of [2) was used to obtain the corresponding ROC.

These results are overlaid as dashed lines in figure 29, for
three selected values of signal-to-noise ratio R (in decibels).
The agreement for small signal-to-noise ratios is very good, and
can be explained by observing that (45) approaches the chi-
squared characteristic function in this case. Approximation (48)
is also excellent for very small false alarm probabilities,
despite the fact that the equivalent number of samples, My is
rather small; for example, the three curves in figure 29 for
R= 2,5,8 dB have My = 5.79, 4.83, 4.31, respectively.

Another example for M = 32, p = .5 is displayed in figure 30.
Here, the values of M4 for the four overlays, R = -2,0,2,4 dB are
24,1, 20.§, 17.6, 15.4, respectively. These larger values cf M,

account for the improved fit to the exact results.
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FOURTH-ORDER APPROXIMATIONS FOR ARBITRARY WEIGHTS

In this section, we will consider a couple of fourth-order
fits to a specified characteristic function and will match

cumulants (or moments) through fourth-order.

GAUSSIAN PLUS CHI-SQUARED FIT

The initial fourth-order fit of interest here corresponds to
the characteristic function of a (nonzero mean) Gaussian random
variable plus a chi-squared variate. That is, the candidate is

exp(iib, - 3t

. 1.2 .
£.(8) = e exp[x{bf - 38%c, - M. 1n(1 - 1£wf))
(1 - i&wf)

(55)

The £first four cumulants of characteristic function (55) are

2
xf(l) - bf + Hf Ve xf(Z) - cf + Mf Ve o

1 3 1 4

l I1f the cumulants are specified, the parameters for

L characteristic function (55) can be determined explicitly as
. (xg(31/2)¢ Xg(4)/6
M, = ¢ W m e,
£ [xf(4)/6]3 £ x£(3)/2

(xf(3)/z]2

(57)

3
b - X1 - %xftay/z]

xg(4)/6)%

Numerical results will be presented in a later section.

e ke e e e e e e 2T T
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NON~-CENTRAL CHI-SQUARED FIT

The other fourth-order £it that we consider corresponds to a
generalized non~central chi-squared variate, namely

characteristic function

iEbE
exp[l - N‘cg}

(1 - 1awg} g

itb
- exp[~——-ﬂ—— - ng 1n(1 - iiwg)} . (58)

fgta’ - 1 - iicg

This is called generalized because we do not force cg - wg.

The ln of (58) can be expanded in a power series in i&:

+- +@
o 3 § : . j § :1 . k
1n fg(z) 1£bg (1£cg) + "g 7(1£wg) . {89)
. j=0 k=l

The first four cumulants of this characteristic function are then

2
(1) = M - 2 M ’
Axg( ) b9 + g wg . xg(Z) bg cg + 9 wg

1 2 3 1 3 4
2Xg(3) 3 bg cg + Mg wg ’ 6xg(4) 4q bg cg + Mg wg . (60)

The inversion of these nonlinear equations, for the parameters in
terms of the cumulants, is not possible in closed form, as it was
for candidate characteristic function (55). This limitation
tends to discourage use of the non-central chi-squared
approximation (58). However, in appendix D, an efficient
numerical procedure for solving (60) for the reguired parameters
is developed and programmed. Application of this approximation

procedure is deferred to a later section.
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PERFORMANCE IN STEADY STATE NOISE

Up to this point, the number of samples, M, has been finite,
both for signal-present as well as signal-absent; then, the noise
output of the exponential integrator, (27) or (40), has not
reached steady-state. In this cection, the number M of noise
samples will be set egqual to =, thereby allowing the integrator
noi;e output to reach steady state. However, the number, N, of
samples containing signal (if present) will remain finite.

This situation arises in practice, for example, when the
precise arrival time of the signal is unknown. The use of
surplus envelope-squared samples {zm}, for m > N, does not
improve performance, since these particular samples are always
noise-only; in fact, these extra samples always degrade
performance, the exact amount depending on the relative sizes of
weights {wm} for m > N compared to m < N. Here, we will give a
method for quantitatively assessing the impact of these surplus

noise-only samples on the operating characteristics.
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CHARACTERISTIC FUNCTION

The characteristic function of the decision variable is an

obvious generalization of (7) to the form

- -1

£ (E) = ﬂ[l - itwmam) . (61)

mel

where the signal-to~noise ratio parameter a_ now takes the form

m

1 for noise-alone
a = : for 1 < m { M=o, (62)
1 + R, for signal-plus-noise
The particular case that will be considered at length, here, is

that of a finite-duration constant-strength signal, which is

accommodated mathematically by setting

R for 1 {m N
- |
0 for N<m<EM=o= .

N

When signal-to-noise ratio R is equal to zero, that is,

signal-absent, the characteristic function in (61) reduces to

- -1

£ (0 = ﬂ(l ST | (64)

m=]

Unfortunately, even for the exponential averager,

1

m—
L (l-r) ¢ for 1

A
E
A
=

the noise-only characteristic function in (64) takes a form,
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- -1
Ex(i) - Y—I[l - iE (1-1) rm—l) R (66)

m=1

which is not expressible in closed focrm; see [11; (89.18.3)].
(Likewise, the finite product cannot be simplified; see

[11; (89.18.2)].) This necessitates termination of the infinite
product in (66}, being sure ‘to keep the remainder below an

acceptable tolerance; this issue i: addressed in appendix E.

CUMULANTS

For general characteristic furction (61), the cumulants are

TT(-:%._)-T Xx(k) = Z(wm am)k for 1 < k . (67)
m=1

For the special case of the exponential averager (65) and the

finite~duration signal (63), these cumulants reduce to

k
- T

At the same time, characteristic function (61) becomes

.y - . -1
fxia) - T—T(l - if (1l-r) rm_l(l + R)) T_T(l - 1i& (1-r) rm-l)
ﬁ-l m=N+1
(69)
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In particular, for noise-alone, then R = 0 and (68) reduces

to

(1 - r)k-l

- . {70)
1 - rk 1 40 + oo + rk'l

The three lowest-order cases are

2
- ~ 1 - ¢ 1~ {1 - r)
xx(ll - 1 , Xx(Z) . e 7xx(3) = 3 - (71)

l+re+r

For signal-present, R > 0, the three lowest cumulants are,

from (68),

Xx(l)-1+R-RrN,

(1 - )2

%xx(a) - 2[(1 + R)3[1 - r3N] + r3N] -2

l +r 4+

Here, N is the number of signal components, R is the signal-to-

noise ratio per sample, and r is the exponential decay factor for

the weight structure (65).
In the evaluation of the signal-present characteristic
function (69), the second product will have to be terminated at a

finite limit m = L (> N). The error due to this truncation is

addressed in appendix E,
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GRAPHICAL RESULTS

An example of the results in this section for M = =, N = 32,
r = .9, is displayed in figure 31, as obtained via exact results
(66) and (69), along with the truncation procedure of appendix E.
Superposed as dashed lines are the results of using the constant
plus chi-squared approximation (48), where the parameters are
of .ained from the cumulants, according to (50). The cumulants
themselves are given by (72). The effective number of samples,
My in (48), takes on the values 10.680, 10.676, 10.673, and
10.672 for the four signal-to-noise ratios of 0, 2, 4, and 6 dB
indicated in the figure. This relatively small value of My is
the reason for the discrepancy in figure 31 between the exact and
apbroximate results,

Figure 32 is drawn for M = o, N =« S0, and r = ,96915298;
compare figure 25, for which M, = 32. The values of My for the
three overlaid curves for signal-to-noise ratios equal to -2, 0,
and 2 dB are 33.531, 33.030, and 32.624, respectively. These
larger values, for the effeétive number ¢f samples, lead to
better agreement in this figure; in fact, the approximation is in

error by only .15 dB along the left edge of the figure.
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BLOCK EXPONENTIAL WEIGHTING

In this section, we again consider a weighted energy detector
in steady state, that is, M = ®, However, the averager now
operates on blocks of data points which are equally weighted, but
which are themselves exponentially weighted. That is, the
decision variable x is now given by

X = w._z_ , (73)

(1 for 1 <m ¢ B
1-r |¥ for B<m ¢ 2B
Ym T TE Y2 f (74)
r for 2B < m € 3B
L: : 4

Here, B is the block size and the weights have been normalized
at W, = 1. The following diagram illustrates the block

exponential weighting structure.

¢—— B —
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SIGNAL STATISTICS

The signal, if present, occupies the first N samples of sum

{73), where

N
"
w1

(75)

is presumed integer; that is, J is the number of blocks occupied

by signal (when present). The signal-to-noise ratio parameter is

1 for noise-only
a = for 1
1+R for signal plus noise

IN

m <N, (763a)

and

a =1 for N{(m< e, (76B)

CHARACTERISTIC FUNCTION

The characteristic function of x in (73) for signal present

is, using the independence of the (z }.

-1
[}
£08) = H(l - i&wmam) ‘-
m=]
J-1 t el ' B
- T_T[l - it lg& rd (1 + R)] ¥_T(1 - it l%L rJ) .
i=0 j=J

Again, an infinite product is required and the truncation

procedure given in appendix E is directly relevant.
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CUMULANTS

The cumulants of decision variable x follow readily from

(77), upon expansion of 1ln f (&) in a power series in i&:

1 ; [Ll-:)/ayk'i

T xx(k) [(1+R)k[1-rk3] + rkJ] for k 2 1. (78)

ler+ercer

The four lowest~order cumulants will be used in fitting the exact

characteristic function (77) by approximations (55) and (58).

GRAPHICAL RESULTS

Results for the operating characteristics for B = 4, J = 32,
and r = .95 are presented in figure 33. Thus, from (75), the
signal (when present) occurs on N = 128 samples. Superposed as
dashed lines is the approximation afforded by third-order fit
(33) and (39). The discrepancy is only .1 dB along the left edge
of the figure, '

Another example of block exponential weighting, for B = ¢,

J =16, and r = .9, is displayed in figure 34. The dashed
overlay is again the third-crder approximation (33), which is
optimistic by about .15 dB along the left edge of the figure.

The exact results from figure 34 are repeated in figure 35,
but now the overlays are the two fourth-crs ¢ aéproximétions (55)
and (58). The latter two approximations are indistinguishable
from each other over the entire range of r ~bahilities displayed.
Furthermore, they differ from the =zxact results only by .05 dB at

the left edge of the figure.
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SUMMARY

The receiver operating characteristics of a variety of
weighted energy detectors, for Gaussian signals in noise, have
been investigated exactly and compared with five different
approximate procedures. The Gaussian and chi-squared
approximations have been found to be generally inadequate for
very small false alarm probabilities, while the generalized
chi-squared (gamma) and both fourth-order fits have yielded very
good results over the entire range of detection and false alarm
probabilities considered. The only limitation of the latter
approaches is the need to have additional cumulants {(or moments),
since the first two cumulants are not always entirely adequate
for accurate performance predictions.

If the exact characteristic functién for the decision
variable of a system can be determined, either analytically or
numerically, then the receiver operating characteristics can be
accurately evaluated by the method of [2], as done here.
However, there‘are occasions where it may be desirable or
imperative to use an approximate characteristic function, as for
example, when only a few low-order moments are known. 1In this
fashion, we can, for example, avoid the determination of
eigenvalues or avoid the evaluation of infinite products. Also, -
the approximate forms will frequently be faster to compute than
the exact results. This report indicates the relative accuracies
inherent in some of the standard approximations and some of their

generalizations, which should be considered for future use.
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APPENDIX A -~ GAUSSIAN APPROXIMATION

The characteristic function of interest was presented in (7):

-1
£,08) = Blexptign} = | | twr = H) |1 - tawpa)l . D)

where (wm}, for 1 ¢ m < M, are an arbitrary set of weights. The
mean and variance of random variable x were given in (9).
Now, if energy detector output x in (1} were a Gaussian

random variable, its probability density function would be

2
(u - p_)
pg(u) ] —-i—g—— expl- -——;—33-— for all u , (A-2)
(2mr) og ag _

where, from (9) and (4), we set

1 W,
2
yg or R ag or . {A-3)
1+ R (1 + R)® W

2

The exceedance distribution function corresponding to (A-2) is

«© u -u
Q. (u) = I dt p (t) = i[—3—~——] for all u , (A-4)
g g °g
u

where

t
(t) = j dv (2307 exp(-v2/2) (A-

[F 4]
e

is the normalized Gaussian cumulative distribution function.
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At this point, it is convenient to define an effective number

of samples, M for an arbitrary set of weights {wm} as in (31)

w - [é"'mr_ o1

e M w w
2 2 2
I v
mel B

e'

Here, we used (8) and (2!}.
If threshold T is utilized for a comparison with energy
detector output x for a decision on signal presence or absence,

then the approximate false alarm probability follows from (A-4):
: Rm0) = #{M9(1- -
Pp = Qg{Ti R=0) +(mic-n) . (A=7)

with the help of (A-3) and (A-6). Similarly, the approximate

detection probability is

Pp = Q (T; R#0) = O(HZ(I - =) - (A-8)

Equations (A-7) and (A-8) produce the Gaussian approximation to
the operating characteristics of the energy detector (1),
described by characteristic function (A-1). They depend only on
the single parameter M, defined in (A-6), in addition to the per-
sample signal-to-noise ratio R. That is, M and {wm} are all
collapsed into the single parameter, effective pumber M.

An immediate obvious problem with (A-8) is that the limit of
detection probability Py, a8 R 2> =, is not 1; in fact, it is
Q(MH) < 1. This drawback serves as a warning about the adequacy

e
of the Gaussian approximation.
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For the approximations in (A-7) and (A-8), we can explicitly
solve for P, in terms of P, as follows. Let & be the inverse
function to ¢; see [10; 26.2.23]. Then (A-7) can be solved for

tnreshold T according to
T =1~ M7 §(P) (A-9)
e ~'"F° °

Substitution of this result inte (A-8) yields

]
e, - .[ﬂe R + s(m} . (A-10)
1 +R
It now follows immediately from (A~10) that, for specified P
and P, the requirzd signal-to-ncise ratio R is
R = —%—3—5 , (A-11)
He - D
where
Fmd(P), D= &P . (A-12)

The result in (A-11) is a generalization of (1; (Cc-8) and (11)]
to the case of arbitrary weights {wm}. It is immediately okbvious
from the denorinater of (A-11) that the desired P, must be

smaller than Q(Mz).
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APPENDIX B - POSITIVITY OF PARAMETER bc

Here, we will show that the parameter bc in (35) is never
negative, regardless of the weight structure {wm}, provided that

Wy 2 0. The Cauchy-Schwartz inequality states that

M ]2 M M
2 2
S aan <) ) o a
m=l _ J m=l mml
for any real quantities {am} and {bm}. If we let a, = wm3/2 and

1/2
b = ¥ , then (B-1) yields

m
M 2 M M
2 3
ra ey T v

m=] m=l m=l
that is W2 { W, W where
T2 3y
M
W $ k
K" ZLJ LA (B-3)
M=l
Therefore
w3 :
In addition, there follows
2
2

(B-5)
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APPENDIX C ~ TRACE RELATIONS FOR EIGENVALUES

Suppose MxH matrix P = [pmn] has eigenvalues {km}, 1 {<m <M,
Let A be the diagonal matrix of eigenvalues {Am} and let Q be the
normalized modal matrix of eigenvectors of P; see [12; section

1.13). Then we can express matrix P in the form

P=QaAQT, (c-1)
from which there follows the k-th power

Pk

=Q Ak QT | (C-2)

We now use the trace relation

tr{A B C) = tr(B C A) , {C-3)
to evaluate the trace of Pk:
M
tr (P%) = trlo A* @T) = tr(ak QT @) = tr(A¥) - EZ:A; . (C-4)
: m=]

That is, the sum of the k-th powers of eigenvalues {xm} can be

k

obtained from the trace of matrix P, without ever haéing to

evaluate the eigenvalues at all. 1In particular,

M M
Y rg = tr®) =Y o e
m=] m=]
M M
2 2
Xm - tt(P ) - °mn °nm ’ (C~6)
m=1 m,n=1

-
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M M

3 3
E 2 . ee(p3) E Pan "ok °km ° (c-7)
m=l m,n, k=1

In order to compute the sums of the three lowest powers of the
eigenvalues of matrix P, we simply have to compute the three sums
on the elements of matrix P, as indicated in (C-5) through (C-7).

In fact, there is no need to compute matrices Pz or 53

gither.
Thus, a seemingly difficult numerical chore is replaced by
straightforward simple summations of products of matrix elements,

yielding a very significant savings in complexity and time.
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AFPENDIX D - INVERSION OF EQUATION (60

For notational efficiency, we suppress all the g subscripts
in (60), let Y = ¥{k}/{k-1})!, and set p = M w. The nonlinear

ejuations then take the form

Yy=b+pP, ¥,=2Dbc+pw,
¥y - 3b c2 + p w? s Yq =4 b c3 +p wd . (D~1)

We solve the first two equations for p and b, getting

Yi v - ¥,
w-2¢

p = e , b = . ’ (D-2)

These quantities are now substituted in the third ani fourth
equations in (D-1), resulting in the highly nonlinear pair of

coupled equations for ¢ and w:

c? 3 (yy w = ¥5) +¢2 (y3 -y wl) + w {y, w - y3) =0, (D-3)

c3 4 (yl W - yz) + c 2 (y4 ol £1 w3) AW (y2 wz— y4) = 0 . (D-4)

The procedure we have adopted for solving these latter two
equations is to start with an initlial quess for w as in (57),

namely

. X6 T4 -
W X' 37172 ) {D=5)

then solve guadratic (D-3) for c¢; substitute thig resuit into
(D-4) and compute the left-hand side; now vary w until the
left-hand side equale zero. Repeat these operations until c¢ and w
stabilize. Equation (D-2) can now be used to get final values of
p ard b, This is the numerical procedure used in the main text.
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APPENDIX E -~ TERMINATION OF INFINITE PRODUCT

1f we terminate the infinite product for the characteristic
functions in (66) or (692) at limit value m = L (> N), then the

neglected remainder product in the denominator is

2L+1
+r

o
Rem = I_T(l ~ iE (1-1) r“‘l) 1 - &P - g2 L
me=L+l

+ o(r3L].(z-1)

This relation enables a choice of L to control the neglected
remainder. For example, & = 200, L = 220, r = .9 leads to
Rem = 1 ~ i1.,7E-8 ~ 1.4E-16. Thus, the Ez term and above can be
safely ignored. One final product in the denominator of (66), by
the factor 1 - iErL. will account for Rem and suffice for
complete accuracy, up to computer round-off error in the
characteristic function evaluation., For larger values of r, it
is necessary to increase the limit L; for example, § = 150,
L = 700, r = ,96915298 yields Rem = 1 -~ i4,.5E-8 - 1lE-15.

I1f we terminate the infinite product for the characteristic
function in (77) at limit value j = L (> J-1), the neglected

remainder product in the denominator i

« B
. B
Rem = l I(l e L IR (U St IR URIE T I Lo e S Y
j=L+1 :

This is substantially the same as (E-1}, where terms of the order

of rZL have beenr neglected.
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